On proper polynomial and holomorphic mappings

Zbigniew Jelonek

Polish Academy of Sciences, Poland najelone@cyf-kr.edu.pl

Session: 2. Algebraic Geometry

Let X, Y be smooth algebraic varieties of the same dimension. Let $f, g: X \longrightarrow$ Y be finite regular mappings. We say that f,g are equivalent if there exists a regular automorphism $\Phi \in \operatorname{Aut}(X)$ such that $f = g \circ \Phi$. Of course if f, g are equivalent, then they have the same discriminants (i.e., the same set of critical values) and the same geometric degree. We show, that conversely there is only a finite number of non-equivalent finite regular mappings $f: X \to Y$, such that the discriminant D(f) = V and $\mu(f) = k$. As one of applications we show that if $f: \mathbb{C}^n \to \mathbb{C}^n$ is a proper mapping with $D(f) = \{x \in \mathbb{C}^n : x_1 = 0\}$, then f is equivalent to the mapping $g: \mathbb{C}^n \ni (x_1, \ldots, x_n) \mapsto (x_1^k, x_2, \ldots, x_n) \in \mathbb{C}^n$, where $k = \mu(f)$. Moreover, if $f: X \to Y$ is a finite mapping of topological degree two, then there exists a regular automorphism $\Phi \colon X \to X$ which acts transitively on fibers of f. In particular for n > 1 there is no finite mappings $f: \mathbb{P}^n \to \mathbb{P}^n$ of topological degree two. We prove the same statement in the local (and sometimes global) holomorphic situation. In particular we show that if $f: (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ is a proper and holomorphic mapping of topological degree two, then there exist biholomorphisms $\Psi, \Phi \colon (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Psi \circ f \circ \Phi(x_1, x_1, \dots, x_n) = (x_1^2, x_2, \dots, x_n)$. Moreover, for every proper holomorphic mapping $f: (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ with smooth discriminant there exist biholomorphisms $\Psi, \Phi \colon (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Psi \circ f \circ \Phi(x_1, x_1, \dots, x_n) =$ (x_1^k, x_2, \dots, x_n) , where $k = \mu(f)$.