On the Abhyankar-Moh inequality

Arkadiusz Płoski

Kielce University of Technology, Poland
matap@tu.kielce.pl
Session: 2. Algebraic Geometry
Let C be a complex affine algebraic curve of degree $n>1$ having only one branch at infinity γ and let $r_{0}, r_{1}, \ldots, r_{h}$ be the n-sequence of the semigroup G of the branch γ defined as follows: $r_{0}=n, r_{k}=\min \left\{r \in G: r \notin \mathbb{N} r_{o}+\right.$ $\left.\cdots+\mathbb{N} r_{k-1}\right\}$ for $k \geq 1$ and $G=\mathbb{N} r_{o}+\cdots+\mathbb{N} r_{h}$. Then the Abhyankar-Moh inequality (see $[1,2]$) can be stated in the form

$$
\begin{equation*}
\operatorname{gcd}\left\{r_{0}, \ldots, r_{h-1}\right\} r_{h}<n^{2} . \tag{n}
\end{equation*}
$$

The aim of this talk is to present (see [3]) some results on the semigrups $G \subset N$ of plane branches γ with property $\left(A M_{n}\right)$. In particular we describe such semigroups with the maximum conductor.

References

[1] S.S.Abhyankar, T.T.Moh, Embeddings of the line in the plane. J. reine angew. Math. 276 (1975), 148-166.
[2] E.García Barroso, A.Płoski, An approach to plane algebroid branches preprint arXiv:1208.0913 [math.AG].
[3] R.D.Barrolleta, E.R. Garca Barroso and A.Płoski, Appendix to [2].

