Regularity of $\overline{\partial}$ on pseudoconvex domains in \mathbb{C}^2

Darius Ehsani

Hochschule Merseburg, Germany dehsani.math@gmail.com

Session: 5. Complex Analysis

Let $\Omega \subset \mathbb{C}^2$ be a smoothly bounded weakly pseudoconvex domain. We discuss the regularity of the solution to the $\overline{\partial}$ -equation on Ω , i.e. we look to solve $\overline{\partial}u = f$ for $f \in W^s_{(0,1)}(\Omega)$. A result of Barrett shows that the canonical solution cannot always be used when one is looking for a solution in $W^s(\Omega)$.

We construct a solution operator which does exhibit regularity. Define the space $A^s_{(0,1)}(\Omega) = W^s_{(0,1)}(\Omega) \cap \ker \overline{\partial}$ and assign to it the norm from $W^s_{(0,1)}(\Omega)$. Our main result is the existence of a solution operator K such that $\overline{\partial}Kf = f$ for all $f \in A^s_{(0,1)}(\Omega)$ and

$$K \colon A^s_{(0,1)}(\Omega) \to W^{s+1/2}(\Omega).$$

for all $s \ge 0$.