Lifting maps to the spectral ball

Pascal J. Thomas

Universit Paul Sabatier, France
pascal.thomas@math.univ-toulouse.fr
Session: 5. Complex Analysis
The spectral unit ball Ω_{n} is the set of all matrices $M \in \mathbb{C}^{n \times n}$ with spectral radius less than 1 . Let us call π the "projection" map which to a matrix M associates $\pi(M) \in \mathbb{C}^{n}$, the coefficients of its characteristic polynomial (essentially), in fact the elementary symmetric functions of its eigenvalues. Let $\mathbb{G}_{n}:=\pi\left(\Omega_{n}\right)$.

When investigating Pick-Nevanlinna problems for maps from the disk to Ω_{n}, it is often useful to project the map to the symmetrized polydisk (for instance to obtain continuity results for the Lempert function, related to the two-point problem): if $\psi \in \mathcal{O}\left(\mathbb{D}, \Omega_{n}\right)$ and $\psi\left(\alpha_{j}\right)=M_{j}, 1 \leq j \leq N$, then $\pi \circ \psi \in \mathcal{O}\left(\mathbb{D}, \mathbb{G}_{n}\right)$ and $\pi \circ \psi\left(\alpha_{j}\right)=\pi\left(M_{j}\right), 1 \leq j \leq N$. Given a map $\varphi \in \mathcal{O}\left(\mathbb{D}, \mathbb{G}_{n}\right)$, we are looking for necessary and sufficient conditions for this map to "lift through given matrices", i.e. find ψ as above so that $\pi \circ \psi=\varphi$. This is problematic when the matrices M_{j} are derogatory (i.e. do not admit a cyclic vector). There are natural necessary conditions, involving not only the values: $\varphi\left(\alpha_{j}\right)=\pi\left(M_{j}\right)$, of course, but also derivatives of φ at the points α_{j}. Those conditions turn out to be sufficient in small dimensions (up to 4).

