Behaviour of solutions of one neuron models

Inese Bula

University of Latvia and Institute of Mathematics and Computer Science of University of Latvia, Latvia
ibula@lanet.lv
The talk is based on the joint work with Aija Anisimova and Maruta Avotina.
Session: 7. Difference equations and their application in the mathematical modeling

Neural networks are complex and large-scale nonlinear dynamical systems. As the proverbial forest can not be seen through because of the trees, a detailed study of single neuron is an interesting subject itself, but it is not necessary to understand the macroscopic dynamics and role of neural networks. In the literature [2] a delay differential equation

$$
\begin{equation*}
x^{\prime}(t)=-g(x(t-\tau)) \tag{1}
\end{equation*}
$$

is used as a model for a single neuron with no internal decay where $g: \mathbf{R} \rightarrow \mathbf{R}$ is either a sigmoid or a piecewise linear signal function and $\tau \leq 0$ is a synaptic transmission delay. From equation (1) we obtain a difference equation

$$
\begin{equation*}
x_{n+1}=\beta x_{n}-g\left(x_{n}\right) . \tag{2}
\end{equation*}
$$

By [2] x denotes the activation level of a neuron, β is interpreted as an internal decay rate and g is a signal function. Accordingly to the parameter β we obtain different behaviour of solutions of difference equation (1). Idea of finding periodic orbits of the model first was demonstrated in [3]. Signal function play an important role in the investigation. In our work we used step functions with two and three thresholds (see [1]) therefore in fact we investigated one dimensional discontinuous piecewise linear map. We will present some results about the solutions of model (2) with different signal functions.

References

[1] A. Anisimova, M. Avotina, I. Bula, Periodic Orbits of Single Neuron Models with Internal Decay Rate $0<\beta \leq 1$, Mathematical Modelling and Analysis 18, 2013, 325-345.
[2] J.Wu, Introduction to Neural Dynamics and Signal Transmission Delay, De Gruyter, Berlin, 2001.
[3] Z.Zhou, Periodic Orbits on Discrete Dynamical Systems, Computers and Mathematics with Applications 45, 2003, 1155-1161.

