Demyanov Difference in infinite dimensional Spaces

Jezry Grzybowski

Adam Mickiewicz University, Poznań, Poland University of Karlsruhe, Karlsruhe, Germany
rich@amu.edu.pl, jgrz@amu.edu.pl, diethard.pallaschke@kit.edu
This talk is based on a joint work with Ryszard Urbański and Diethard Pallaschke

Session: 10. Generalized Convexity
We generalize the Demyanov difference to the case of real Hausdorff topological vector spaces.

For $A, B \subset X$ we define upper difference $\mathcal{E}_{A, B}$ as the family $\mathcal{E}_{A, B}=\{C \in$ $\mathcal{C}(X) \mid A \subset \overline{B+C}\}$, where $\mathcal{C}(X)$ is the family of all nonempty closed convex subsets of the topological vector space X. We denote the family of inclusion minimal elements of $\mathcal{E}_{A, B}$ by $m \mathcal{E}_{A, B}$. We define a new subtraction by $A \xrightarrow{D}$ $B=\overline{\text { conv }} \bigcup m \mathcal{E}_{A, B}$. We show that $A \xrightarrow{D} B$ is a generalization of Demyanov difference. We prove some clasical properties of the Demyanov difference. For a locally convex vector space X and compact sets $A, B, C \in \mathcal{C}(X)$ the DemyanovDifference has the following properties:
(D1) If $A=B+C$, then $C=A \stackrel{D}{-} B$.
(D2) $(A \stackrel{D}{-} B)+B \supset A$.
(D3) If $B \subset A$, then $0 \in A \stackrel{D}{-} B$.
(D4) $(A \stackrel{D}{-} B)=-(B \stackrel{D}{-} A)$
(D5) $A \stackrel{D}{-} C \subset(A \stackrel{D}{-} B)+(B \stackrel{D}{-} C)$.
In the proofs we use a new technique which is based on the following lemma. Let X be a Hausdorff topological vector space, A be closed convex, B bounded subset of X. Then for every bounded subset M we have $\overline{A+M}=\bigcap_{C \in \mathcal{E}_{A, B}} \overline{B+C+M}$.

We also give connections between Minkowski subtraction and the union of upper differences.

Let X be a Hausdorff topological vector space, A be closed convex, B bounded subset of X. Then $A \dot{-} B=\bigcap \mathcal{E}_{A, B}$ where $A \dot{-} B=\{x \in X \mid B+x \subset A\}$.

We show that in the case of normed spaces the Demyanov difference coincides with classical definitions of Demyanov subtraction.

References

[1] Grzybowski, J., Pallaschke, D., and Urbanski, R.; Demyanov difference in infinite dimensional spaces, Constructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications 87 (2014), 13-24.

