Demyanov Difference in infinite dimensional Spaces

Jezry Grzybowski

Adam Mickiewicz University, Poznań, Poland University of Karlsruhe, Karlsruhe, Germany rich@amu.edu.pl, jgrz@amu.edu.pl, diethard.pallaschke@kit.edu

This talk is based on a joint work with Ryszard Urbański and Diethard Pallaschke

Session: 10. Generalized Convexity

We generalize the Demyanov difference to the case of real Hausdorff topological vector spaces.

For $A, B \subset X$ we define upper difference $\mathcal{E}_{A,B}$ as the family $\mathcal{E}_{A,B} = \{C \in \mathcal{C}(X) | A \subset \overline{B+C}\}$, where $\mathcal{C}(X)$ is the family of all nonempty closed convex subsets of the topological vector space X. We denote the family of inclusion minimal elements of $\mathcal{E}_{A,B}$ by $m\mathcal{E}_{A,B}$. We define a new subtraction by $A \stackrel{D}{-} B = \overline{\text{conv}} \bigcup m\mathcal{E}_{A,B}$. We show that $A \stackrel{D}{-} B$ is a generalization of Demyanov difference. We prove some clasical properties of the Demyanov difference. For a locally convex vector space X and compact sets $A, B, C \in \mathcal{C}(X)$ the Demyanov-Difference has the following properties:

(D1) If A = B + C, then $C = A \stackrel{D}{-} B$.

- (D2) $(A \stackrel{D}{-} B) + B \supset A.$
- (D3) If $B \subset A$, then $0 \in A \stackrel{D}{-} B$.
- (D4) $(A \stackrel{D}{-} B) = -(B \stackrel{D}{-} A)$
- (D5) $A \stackrel{D}{-} C \subset (A \stackrel{D}{-} B) + (B \stackrel{D}{-} C).$

In the proofs we use a new technique which is based on the following lemma. Let X be a Hausdorff topological vector space, A be closed convex, B bounded subset of X. Then for every bounded subset M we have $\overline{A+M} = \bigcap_{C \in \mathcal{E}_{A,B}} \overline{B+C+M}$.

We also give connections between Minkowski subtraction and the union of upper differences.

Let X be a Hausdorff topological vector space, A be closed convex, B bounded subset of X. Then $\dot{A-B} = \bigcap \mathcal{E}_{A,B}$ where $\dot{A-B} = \{x \in X | B + x \subset A\}$.

We show that in the case of normed spaces the Demyanov difference coincides with classical definitions of Demyanov subtraction.

DMV–PTM Mathematical Meeting 17–20.09.2014, Poznań

References

 Grzybowski, J., Pallaschke, D., and Urbanski, R.; *Demyanov difference in infinite dimensional spaces*, Constructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications 87 (2014), 13-24.