Critical mass in a volume filling model

Tomasz Cieślak

IMPAN, Poland cieslak@impan.pl

Session: 13. Global existence versus blowup in nonlinear parabolic systems

In my talk I will review our recent common results with Christian Stinner related to the fully parabolic volume filling Keller-Segel model with a probability jump function given by

$$q(u) = (1+u)^{-\gamma}, \quad \gamma \ge 0.$$

The most interesting one is a critical mass phenomenon in dimension 2. It states that for $\gamma \geq 1$ there exists a value of initial mass m_* distinguishing between global-in-time bounded solutions for initial data with mass $m < m_*$ (in the case of radially symmetric solutions the critical value is $8\pi(1 + \gamma)$, for any data $m_* = 4\pi(1 + \gamma)$) and an existence of solutions which become infinite when time goes to ∞ , however existing globally in time. The second situation takes place for initial mass of radially symmetric data exceeding $8\pi(1 + \gamma)$. For $0 < \gamma < 1$ we have a similar result, the only difference is that it is open whether in the supercritical case solutions blow up in finite or infinite time.