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The Valdivia-Vogt structure table

D ⊂ S ⊂ DLp ⊂ Ḃ ⊂ DL∞ ⊂ OC ⊂ OM ⊂ E = C∞∼= ∼= ∼= ∼= ∼= ∼= ∼= ∼=

C(N)⊗̂ιs ⊂ s⊗̂s ⊂ `p⊗̂s ⊂ c0⊗̂s ⊂ `∞⊗̂s ⊂ s′⊗̂ιs ⊂ s′⊗̂πs ⊂ CN⊗̂s

presented in [3] contains the most prominent spaces of smooth functions occur-

ring in the theory of distributions together with their sequence-space represen-

tations. Analogously its “dual version”

E ′ ⊂ S ′ ⊂ D′
Lp ⊂ D′

L∞ ⊂ O′
M ⊂ O′

C ⊂ D′

∼= ∼= ∼= ∼= ∼= ∼= ∼=

C(N)⊗̂s′ ⊂ s′⊗̂s′ ⊂ `p⊗̂s′ ⊂ `∞⊗̂s ⊂ s⊗̂ιs′ ⊂ s⊗̂πs′ ⊂ CN⊗̂s′

contains the most prominent spaces of distributions together with their se-

quence space representations.

In [1] the existence of an isomorphism Φ: E → CN⊗̂s such that every restriction

to any other space in the structure table provides an isomorphism between this

space and its sequence space representation is shown.

We provide an explicit isomorphism between the spaces E(R) = C∞(R) and

CN⊗̂s as well as an explicit isomorphism between the spaces D′(R) and CN⊗̂s′
which allow us to interpret the tables above as commutative diagrams. We

use these isomorphisms to construct a common basis for the spaces of smooth

functions and one for the spaces of distributions in the tables except DL∞ and

D′
L∞ , those spaces being non-separable.
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