Necessary and sufficient conditions for well-posedness of p-evolution equations

Chiara Boiti

University of Ferrara, Italy chiara.boiti@unife.it

Session: 17. Functional Analysis: relations to Complex Analysis and PDE

For $p \geq 2$ we consider, in $[0,T] \times \mathbb{R}$, the p-evolution operator P of the form

$$P(t, x, D_t, D_x) = D_t + a_p(t)D_x^p + \sum_{j=0}^{p-1} a_j(t, x)D_x^j,$$

where $a_p \in C([0,T];\mathbb{R})$ and $a_j \in C([0,T];\mathcal{B}^{\infty})$ for $0 \leq j \leq p-1$.

We look for necessary and sufficient conditions for well-posedness in H^{∞} of the associated Cauchy problem.

The assumption that a_p is real valued means that the principal symbol, in the sense of Petrowski, has the real characteristic $\tau = -a_p(t)\xi^p$ and is due to the Lax-Mizohata Theorem. Many results of well-posedness of the Cauchy problem are known when also the other coefficients a_j , for $0 \le j \le p-1$, are real. When a_j are complex valued W. Ichinose proved, in the case p=2, that some decay condition on $\operatorname{Im} a_{p-1} = \operatorname{Im} a_1$ is necessary and sufficient for well-posedness in H^{∞} .

In [1] we look for sufficient conditions for well-posedness in H^{∞} , obtaining a set of decay conditions, as $x \to +\infty$, on Im $D_x^{\beta} a_j$, for $j \leq p-1$ and $[\beta/2] \leq j-1$.

These results have been extended to the case of p-evolution equations of higher order in [2] and to semi-linear 3-evolution equations in [3].

Then a necessary condition for well-posedness of the Cauchy problem in H^{∞} has been proved in [4], generalizing to the case $p \geq 2$ the necessary condition given by Ichinose for p = 2.

References

- [1] A. Ascanelli, C. Boiti, L. Zanghirati, Well-posedness of the Cauchy problem for p-evolution equations, J. Differential Equations 253, 2012, 2765–2795.
- [2] A. Ascanelli, C. Boiti, Well-posedness of the Cauchy problem for higher order p-evolution equations, J. Differential Equations 255, 2013, 2672–2708.
- [3] A. Ascanelli, C. Boiti, L. Zanghirati, Well-posedness in Sobolev spaces for semilinear 3-evolution equations, Ann. Univ. Ferrara Sez. VII Sci. Mat., to appear, 2014.
- [4] A. Ascanelli, C. Boiti, L. Zanghirati, A Necessary condition for H^{∞} well-posedness of linear p-evolution equations, in preparation.