## Multiplicity free induction and orthogonal polynomials

Maarten van Pruijssen<br>University of Paderborn, Germany<br>vanpruijssen@math.upb.de

Session: 18. Harmonic analysis, orthogonal expansions and Dunkl theory
Given a compact Gelfand pair $(G, K)$ of rank one, the induction of the trivial $K$-representation to $G$ decomposes multiplicity free as a $G$-module. In the harmonic analysis on $G / K$ this is reflected in the fact that the algebra of $G$-invariant differential operators on $G / K$ is commutative. This, in turn, brings a family of Jacobi polynomials into the game, as simultaneous eigenfunctions for the $G$-invariant differential operators on $G / K$.

There are more irreducible $K$-representations $\pi^{K}$ whose induction to $G$ decomposes multiplicity free as a $G$-module. In fact, the triples $\left(G, K, \pi^{K}\right)$ with this property have been classified recently. In the case that $(G, K)$ is of rank one, such a triple $\left(G, K, \pi^{K}\right)$ gives rise to a family of matrix valued orthogonal polynomials with properties that are similar to those of a family of Jacobi polynomials. For some higher rank examples we find similar families of orthogonal polynomials, now in several variables.

In this talk I will report on this research and on possible applications to the harmonic analysis on homogeneous vector bundles over non-compact homogeneous spaces, that are subject to similar multiplicity free regime.

