Renormalized solutions of nonlinear parabolic problems in generalized Musielak–Orlicz spaces

Petra Wittbold

Universität Duisburg-Essen, Germany petra.wittbold@uni-due.de

The talk is based on a joint work with P. Gwiazda, A. Wróblewska-Kamińska and A. Zimmermann

Session: 23. Nonlinear Evolution Equations and their Applications

We are interested in existence and uniqueness of renormalized solutions to the nonlinear initial-boundary value problem

$$\partial_t \beta(x, u) - \operatorname{div}(a(x, Du) + F(u)) = f \text{ in } Q_T = (0, T) \times \Omega$$
$$u = 0 \text{ on } \Sigma_T = (0, T) \times \partial \Omega$$
$$\beta(\cdot, u(0, \cdot)) = b_0 \text{ on } \Omega,$$

where

- $\beta: \Omega \times \mathbb{R} \to \mathbb{R}$ is a monotone single-valued Carathéodory function,
- $F: \mathbb{R} \to \mathbb{R}^N$ is a locally Lipschitz continuous function,
- b_0 and f are integrable given data, and
- the Carathéodory vector field $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ is monotone w.r.t. $\xi \in \mathbb{R}^N$ and satisfies generalized growth and coerciveness conditions of the form $a(x,\xi) \cdot \xi \ge c_a(M(x,\xi) + M^*(x,a(x,\xi)) - a_0(x) \quad \text{a.e. } x \in \Omega, \forall \xi \in \mathbb{R}^N,$

with $c_a > 0$, $a_0 \in L^1(\Omega)$, $M : \Omega \times \mathbb{R}^N \to \mathbb{R}$ being a generalized \mathcal{N} -function with complementary function M^* . Our setting includes parabolic problems involving the p(x)- and also the anisotropic $p = (p_1, \ldots, p_N)$ -Laplacian with variable exponents essentially larger than 1.

The appropriate functional setting involves generalized Musielak-Orlicz spaces $L_M(\Omega; \mathbb{R}^N)$ which, in general, are neither separable nor reflexive. Therefore, classical monotonicity and truncation techniques have to be appropriately adapted to the non-reflexive and non-separable functional setting.