Cycles in triangle-free graphs of large chromatic number

Benny Sudakov
ETH Zürich, Switzerland
benjamin.sudakov@math.ethz.ch

The talk is based on the joint work with Alexandr Kostochka and Jacques Verstraete.

Session: 27. Probabilistic and Extremal Combinatorics

More than twenty years ago Erdős conjectured that a triangle-free graph G of chromatic number $k \geq k_{0}(\varepsilon)$ contains cycles of at least $k^{2-\varepsilon}$ different lengths as $k \rightarrow \infty$. In this paper, we prove the stronger fact that every triangle-free graph G of chromatic number $k \geq k_{0}(\varepsilon)$ contains cycles of $\left(\frac{1}{64}-\varepsilon\right) k^{2} \log k$ consecutive lengths, and a cycle of length at least $\left(\frac{1}{4}-\varepsilon\right) k^{2} \log k$. As there exist triangle-free graphs of chromatic number k with at most roughly $4 k^{2} \log k$ vertices for large k, theses results are tight up to a constant factor. We also give new lower bounds on the circumference and the number of different cycle lengths for k-chromatic graphs in other monotone classes, in particular, for clique-free graphs and graphs without odd cycles

