Parameters for defining characteristic representations and counting semisimple classes

Frank Lübeck

RWTH Aachen, Germany Frank.Luebeck@math.rwth-aachen.de

The talk is based on the joint work with Olivier Brunat (Paris).

Session: 31. Representation Theory, Transformation Groups, and Applications

In this talk we consider connected reductive algebraic groups G over an algebraic closure $\overline{\mathbb{F}}_p$ of a finite prime field with p elements. We assume that G is defined over a finite subfield \mathbb{F}_q via a Frobenius morphism $F: G \to G$, and we are interested in the corresponding finite group of Lie type $G(q) := G^F$, the fixed points of F in G.

In the special case that G is of simply-connected type, Steinberg showed that the irreducible representations of G(q) over $\overline{\mathbb{F}}_p$ are obtained as restrictions of q^l (where l is the rank of G) highest weight representations of the algebraic group G. As a consequence we get that G(q) has q^l semisimple conjugacy classes.

We consider general groups G and Frobenius morphisms F given in terms of a root datum with Frobenius action on it. Starting from these data we describe a parameterization of the irreducible representations of G(q) over $\overline{\mathbb{F}}_p$ (in general they are not all restrictions from the algebraic group). As an application we compute from this parameterization for all simple algebraic groups G as above and all Frobenius morphisms on G the number of semisimple classes of the corresponding finite group G(q).

References

 O. Brunat, F. Lübeck, On defining characteristic representations of finite reductive groups, Journal of Algebra, Volume 395 (2013), 121-141.