A new lower bound for the length of the hierarchy of norms

Alexander C. Block

Department of Mathematics, University of Hamburg, Germany fmua001@uni-hamburg.de

Session: 32. Set Theory

A norm is a surjective function from the Baire space \mathbb{R} onto an ordinal. Given two norms φ, ψ we write $\varphi \leq_{N} \psi$ if φ continuously reduces to ψ . Then \leq_{N} is a preordering and so passing to the set of corresponding equivalence classes yields a partial order, the *hierarchy of norms*.

Assuming the axiom of determinacy (AD) the hierarchy of norms is a wellorder. The length Σ of the hierarchy of norms was investigated by Löwe in [1]; he determined that $\Sigma \geq \Theta^2$ (where $\Theta := \sup\{\alpha \mid \text{There is a surjection from } \mathbb{R} \text{ onto } \alpha\}$). In his talk "Multiplication in the hierarchy of norms", given at the ASL 2011 North American Meeting in Berkeley, Löwe presented a binary operation \boxtimes on the hierarchy of norms such that for wellchosen norms φ, ψ the ordinal rank of $\varphi \boxtimes \psi$ in the hierarchy of norms is at least as big as the product of the ordinal ranks of φ and ψ , which implies that Σ is closed under ordinal multiplication and so $\Sigma \geq \Theta^{\omega}$.

In this talk I will note that in fact for wellchosen norms φ, ψ the ordinal rank of $\varphi \boxtimes \psi$ is exactly the product of the ranks of φ and ψ with an intermediate factor of ω_1 . Furthermore using a stratification of the hierarchy of norms into initial segments closed under the \boxtimes -operation I will show that $\Sigma \ge \Theta^{(\Theta^{\Theta})}$.

References

 Benedikt Löwe, The length of the full hierarchy of norms, Rendiconti del Seminario Matematico dell'Università e del Politecnico di Torino, vol. 63 (2005), no. 2, pp. 161–168.