The logarithmic- $B M O A$ space, multipliers, and spaces of Dirichlet type

Daniel Girela

Universidad de Málaga, Spain
girela@uma.es
Session: 33. Spaces of analytic functions
If X and Y are two spaces of analytic functions in the unit disc \mathbb{D} which are continuously contained in $\mathcal{H o l}(\mathbb{D}), \mathcal{M}(X, Y)$ denotes the space of multipliers from X to $Y, \mathcal{M}(X, Y)=\{g \in \mathcal{H o l}(\mathbb{D}): f g \in Y, \quad$ for all $f \in X\}$. The space of multipliers from X to itself will be simply denoted by $\mathcal{M}(X)$.

The spaces $\mathcal{M}(X, Y)$ have been studied for a big number of spaces X, Y. In this talk we shall concentrate our attention in the case where X and Y are spaces related with the spaces of Dirichlet type $\mathcal{D}_{\alpha}^{p}(0<p<\infty, \alpha>-1)$, $B M O A$ and the Bloch space \mathcal{B}.

Let us remark that the spaces $M(\mathcal{B})$ and $\mathcal{M}(B M O A)$ are known:

- $M(\mathcal{B})=H^{\infty} \cap \mathcal{B}_{\text {log }}$, where $\mathcal{B}_{\text {log }}$ is the logarithmic Bloch space which consists of those $f \in \mathcal{H o l}(\mathbb{D})$ with $\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \log \frac{1}{1-|z|^{2}}<\infty$.
- $\mathcal{M}(B M O A)=H^{\infty} \cap B M O A_{\log }$, where the logarithmic- $B M O A$ space $B M O A_{\log }$ consists of those $f \in \mathcal{H o l}(\mathbb{D})$ for which the Borel measure μ_{f} in \mathbb{D} defined by $d \mu_{f}(z)=\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|^{2} d A(z)$ is a 2-logarithmic Carleson measure.

Our starting point is the fact that whenever $p \neq q$, the only multiplier from \mathcal{D}_{p-1}^{p} to \mathcal{D}_{q-1}^{q} is the trivial one. It is easy to see that if $0<p<q<\infty$ then $\mathcal{B} \cap \mathcal{D}_{p-1}^{p} \subset \mathcal{B} \cap \mathcal{D}_{q-1}^{q}$. This clearly implies the following: "If X is a subspace of the Bloch space and $0<p<q<\infty$, then the space of multipliers $\mathcal{M}\left(X \cap \mathcal{D}_{p-1}^{p}, X \cap \mathcal{D}_{q-1}^{q}\right)$ is non trivial". Then the question of characterizing the space $\mathcal{M}\left(X \cap \mathcal{D}_{p-1}^{p}, X \cap \mathcal{D}_{q-1}^{q}\right)$ for classical subspaces of the Bloch space such as $H^{\infty}, B M O A$ or \mathcal{B} arises naturally. In this talk we shall consider the case $X=B M O A$. We shall present a number of results on the space $B M O A_{\log }$ and we shall use them to study the spaces $\mathcal{M}\left(B M O A \cap \mathcal{D}_{p-1}^{p}, B M O A \cap \mathcal{D}_{q-1}^{q}\right)$, $0<p, q<\infty$.

This talk is based on several recent works in collaboration with several colleagues such as C. Chatzifountas, R. Hernández, P. Galanopoulos, M. J. Martín, and José Ángel Peláez.

