The logarithmic-*BMOA* space, multipliers, and spaces of Dirichlet type

Daniel Girela

Universidad de Málaga, Spain girela@uma.es

Session: 33. Spaces of analytic functions

If X and Y are two spaces of analytic functions in the unit disc \mathbb{D} which are continuously contained in $\mathcal{H}ol(\mathbb{D})$, $\mathcal{M}(X,Y)$ denotes the space of multipliers from X to Y, $\mathcal{M}(X,Y) = \{g \in \mathcal{H}ol(\mathbb{D}) : fg \in Y, \text{ for all } f \in X\}$. The space of multipliers from X to itself will be simply denoted by $\mathcal{M}(X)$.

The spaces $\mathcal{M}(X,Y)$ have been studied for a big number of spaces X,Y. In this talk we shall concentrate our attention in the case where X and Y are spaces related with the spaces of Dirichlet type \mathcal{D}^p_{α} (0 -1), BMOA and the Bloch space \mathcal{B} .

Let us remark that the spaces $M(\mathcal{B})$ and $\mathcal{M}(BMOA)$ are known:

- $M(\mathcal{B}) = H^{\infty} \cap \mathcal{B}_{\log}$, where \mathcal{B}_{\log} is the logarithmic Bloch space which consists of those $f \in \mathcal{H}ol(\mathbb{D})$ with $\sup_{z \in \mathbb{D}} (1 |z|^2) |f'(z)| \log \frac{1}{1 |z|^2} < \infty$.
- $\mathcal{M}(BMOA) = H^{\infty} \cap BMOA_{\log}$, where the logarithmic-BMOA space $BMOA_{\log}$ consists of those $f \in \mathcal{H}ol(\mathbb{D})$ for which the Borel measure μ_f in \mathbb{D} defined by $d\mu_f(z) = (1 |z|^2)|f'(z)|^2 dA(z)$ is a 2-logarithmic Carleson measure.

Our starting point is the fact that whenever $p \neq q$, the only multiplier from \mathcal{D}_{p-1}^p to \mathcal{D}_{q-1}^q is the trivial one. It is easy to see that if $0 then <math>\mathcal{B} \cap \mathcal{D}_{p-1}^p \subset \mathcal{B} \cap \mathcal{D}_{q-1}^q$. This clearly implies the following: "If X is a subspace of the Bloch space and $0 , then the space of multipliers <math>\mathcal{M}(X \cap \mathcal{D}_{p-1}^p, X \cap \mathcal{D}_{q-1}^q)$ is non trivial". Then the question of characterizing the space $\mathcal{M}(X \cap \mathcal{D}_{p-1}^p, X \cap \mathcal{D}_{q-1}^q)$ for classical subspaces of the Bloch space such as H^{∞} , BMOA or \mathcal{B} arises naturally. In this talk we shall consider the case X = BMOA. We shall present a number of results on the space $BMOA_{\log}$ and we shall use them to study the spaces $\mathcal{M}(BMOA \cap \mathcal{D}_{p-1}^p, BMOA \cap \mathcal{D}_{q-1}^q)$, $0 < p, q < \infty$.

This talk is based on several recent works in collaboration with several colleagues such as C. Chatzifountas, R. Hernández, P. Galanopoulos, M. J. Martín, and José Ángel Peláez.