Codimension one coincidence Indices for spin $P L$ manifolds

Donco Dimovski
University "Ss Cyril and Methodius", Skopje, Republic of Macedonia donco@pmf.ukim.mk

Session: 35. Topological fixed point theory and related topics

Using the results and techniques about one-parameter fixed point theory from [3], one-parameter fixed point indices from [1], and the geometric description of spin manifolds and spin structures based on [2], two indices for codimension one coincidences are defined, as follows. Let $F, G: X \rightarrow Y$ be $P L$ maps where X and Y are and spin, closed, connected $P L$ manifolds, X is ($n+1$)-dimensional and Y is an n-dimensional, $n \geq 5$. A coincidence of F and G is a point a X such that $F(a)=G(a)$. The set of all the coincidences is denoted by Coin(F,G). For a family V of isolated circles of coincidences of F and G, we define two indices: $\operatorname{ind}_{1}(F, G ; V)$ - which is an element in the first homology group $H_{1}(E)$, where E is the space of paths in $X \times Y$ from the graph of F to the graph of G; and $\operatorname{ind}_{2}(F, G ; V)$ - which is an element in the group \mathbf{Z}_{2} with two elements. We prove that for a family V of isolated circles of coincidences of F and G in the same coincidence class there is a neighborhood N of V and a homotopy from F to H rel $X \backslash N$ such that $\operatorname{Coin}(H, G)=\operatorname{Coin}(F, G) \backslash V$ if and only if $\operatorname{ind}_{1}(F, G ; V)=0$ and $\operatorname{ind}_{2}(F, G ; V)=0$.

References

[1] D. Dimovski, One-parameter fixed point indices, Pacif. J. of Math., Vol. 161. No. 2, 1994, 263-297.
[2] D. Dimovski, Canonical Embeddings of $S^{1} \times \Delta^{n-1}$ into orientable n-dimensional closed PL manifolds for $n>4$, Top. And its Applic., Volume 160, Issue 17, 2013, 2141-216.
[3] D. Dimovski, R. Geoghegan, One-parameter Fixed Point Theory, Forum Math. 2, 1990, 125-154.
Everything is new and important

