Rotund and smooth renormings of the Lebesgue-Bochner space $L^1(\mu, X)$

Marián Fabian

Institute of Mathematics, Czech Academy of Sciences, Czech Republic fabian@math.cas.cz

Session: 36. Topology in Functional Analysis

The lecture is based on recent two joint papers of Sebastian Lajara and myslef. Let $(X, \|\cdot\|)$ be a Banach space and μ be a probability measure. Using Luxemburg norm associated to a suitable Orlicz function, we construct an equivalent norm $\||\cdot\|\|$ on the Lebesgue-Bochner space $L^1(\mu, X)$ with the property: If $\|\cdot\|$ on X is rotund (or uniformly rotund in every direction, or locally uniformly rotund, or midpoint locally uniformly rotund, or Gateaux smooth, or uniformly Gateaux smooth), then the norm $\||\cdot\|\|$ has the respective property (or a combination of them). Moreover, if $\|\cdot\|$ on X is uniformly rotund (or uniformly Fréchet smooth, or has both latter properties), then the restriction of $\||\cdot\|\|$ to any reflexive subspace of $L^1(\mu, X)$ is such.