Parameter-dependence of ODE's and regularity in the theory of infinite-dimensional Lie groups

Helge Glöckner

Universität Paderborn, Germany glockner@math.upb.de

Session: 36. Topology in Functional Analysis

Let G be a Lie group modelled on a locally convex space, with identity element e and Lie algebra \mathfrak{g} . We say that G is C^0 -semiregular if every continuous curve $\gamma: [0,1] \to \mathfrak{g}$ arises as the left logarithmic derivative of a (necessarily unique) C^1 -curve $\eta = \eta_{\gamma}: [0,1] \to G$ with $\eta(0) = e$. If, moreover, the map

evol: $C([0,1],\mathfrak{g}) \to G, \quad \gamma \mapsto \eta_{\gamma}(1)$

is smooth, then G is called C^0 -regular. Thus, we are interested in the existence of solutions to certain initial value problems on a Lie group, and their dependence on parameters. I show that continuous dependence frequently entails smooth dependence. To this end, I first observe that evol is continuous if and only if it is continuous at 0. The main result then reads:

Theorem. If G is C^0 -semiregular, evol is continuous at 0 and the smooth homomorphisms from G to C^0 -regular Lie groups separate points on G, then G is C^0 -regular.

As an application, consider a finite-dimensional Lie group H with compact Lie algebra \mathfrak{h} . As recently shown in a Master's thesis by Timm Pieper (Paderborn), there is a Lie group $C^{\infty}_{\mathcal{W}}(\mathbb{R}, H)$ of certain H-valued smooth maps on the line which is modelled on the weighted function space $C^{\infty}_{\mathcal{W}}(\mathbb{R}, \mathfrak{h})$, for the set \mathcal{W} of all weight functions $f_a \colon \mathbb{R} \to]0, \infty[, f_a(t) \coloneqq e^{-a|t|}$ with a > 0. I'll explain how the above theorem can be used to see that the Lie group $C^{\infty}_{\mathcal{W}}(\mathbb{R}, H)$ is C^0 -regular.