On uncomplemented isometric copies of c_0 in spaces of continuous functions on products of the two-arrows space

Artur Michalak

Faculty of Mathematics and Computer Science A. Mickiewicz University, Poznań, Poland michalak@amu.edu.pl

Session: 36. Topology in Functional Analysis

Phillips in [4] proved that c_0 is an uncomplemented subspace of l_{∞} . We do not find in the literature many classes of separable Hausdorff compact spaces K such that there exists a subspace X isomorphic to c_0 and uncomplemented in C(K). Except $\beta\mathbb{N}$ appears essentially only the class of Mrówka spaces (see [3]). The reason is simple, usually it is quite hard to show the uncomplementability. There is one general method to do it, it is a modification of the Whitley proof of the Phillips theorem (see [6]). The method based on the facts that any C(K) space, when K is separable and compact, does not contain any isomorphic copy of $c_0(\Gamma)$ for any uncountable set Γ but the quotient space C(K)/X contains such a copy (see [2], [6], [1]).

We construct for every $n \geq 2$ a subspace X_n isometric to c_0 and complemented in $C(\mathbb{L}^n)$, the n-fold product of two arrows space \mathbb{L} , such that $\inf\{\|P\|:P:C(\mathbb{L}^n)\to X_n \text{ is a projection}\}\geq n+2$ and the quotient space $C(\mathbb{L}^n)/X_n$ has a $(3+4\sqrt{2})$ norming sequence of norm one functionals. The inequality together with the last fact enables us to find an isometric to c_0 and uncomplemented subspace Y of $C(\mathbb{L}^\mathbb{N})$ such that the quotient space $C(\mathbb{L}^\mathbb{N})/Y$ is isomorphic to a subspace of l_∞ .

References

- [1] J. Ferrer, J. Kąkol, M. López Pellicer, M. Wójtowicz On a three-space property for Lindelöf Σ -spaces, (WCG)-spaces and the Sobczyk property, Funct. Approx. Comment. Math., 44 (2011), 289–306.
- [2] S. Molto On a theorem of Sobczyk, Bull Austral. Math. Soc. 43 (1991), 123–130.
- $[3]\,$ S. Mrówka On completely regular spaces, Fund. Math. 41 (1954), 105–106.
- $[4]\ R.\ S.\ Phillips \ On\ linear\ transformations, Trans. Amer. Math. Soc., 48 (1940), 516-541.$
- [5] R. Whitley Projecting m onto c_0 , Amer. Math. Monthly, 73 (1965), 285–286.
- [6] D. Yost The Jonhson-Lindenstrauss space, Extracta. Math. 12 (1997), 185–192.