On uncomplemented isometric copies of c_{0} in spaces of continuous functions on products of the two-arrows space

Artur Michalak

Faculty of Mathematics and Computer Science A. Mickiewicz University, Poznań , Poland
michalak@amu.edu.pl
Session: 36. Topology in Functional Analysis

Phillips in [4] proved that c_{0} is an uncomplemented subspace of l_{∞}. We do not find in the literature many classes of separable Hausdorff compact spaces K such that there exists a subspace X isomorphic to c_{0} and uncomplemented in $C(K)$. Except $\beta \mathbb{N}$ appears essentially only the class of Mrówka spaces (see [3]). The reason is simple, usually it is quite hard to show the uncomplementability. There is one general method to do it, it is a modification of the Whitley proof of the Phillips theorem (see [6]). The method based on the facts that any $C(K)$ space, when K is separable and compact, does not contain any isomorphic copy of $c_{0}(\Gamma)$ for any uncountable set Γ but the quotient space $C(K) / X$ contains such a copy (see [2], [6], [1]).

We construct for every $n \geqslant 2$ a subspace X_{n} isometric to c_{0} and complemented in $C\left(\mathbb{L}^{n}\right)$, the n-fold product of two arrows space \mathbb{L}, such that $\inf \left\{\|P\|: P: C\left(\mathbb{L}^{n}\right) \rightarrow X_{n}\right.$ is a projection $\} \geqslant n+2$ and the quotient space $C\left(\mathbb{L}^{n}\right) / X_{n}$ has a $(3+4 \sqrt{2})$ norming sequence of norm one functionals. The inequality together with the last fact enables us to find an isometric to c_{0} and uncomplemented subspace Y of $C\left(\mathbb{L}^{\mathbb{N}}\right)$ such that the quotient space $C\left(\mathbb{L}^{\mathbb{N}}\right) / Y$ is isomorphic to a subspace of l_{∞}.

References

[1] J. Ferrer, J. Ka̧kol, M. López Pellicer, M. Wójtowicz On a three-space property for Lindelöf Σ-spaces, (WCG)-spaces and the Sobczyk property, Funct. Approx. Comment. Math., 44 (2011), 289-306.
[2] S. Molto On a theorem of Sobczyk, Bull Austral. Math. Soc. 43 (1991), 123-130.
[3] S. Mrówka On completely regular spaces, Fund. Math. 41 (1954), 105-106.
[4] R. S. Phillips On linear transformations, Trans. Amer. Math. Soc., 48 (1940), 516-541.
[5] R. Whitley Projecting m onto c_{0}, Amer. Math. Monthly, 73 (1965), 285-286.
[6] D. Yost The Jonhson-Lindenstrauss space, Extracta. Math. 12 (1997), 185-192.

