On a Gulisashvili question on scalarly measurable functions

Anatolij Plichko

Cracow University of Technology, Poland aplichko@pk.edu.pl

Session: 36. Topology in Functional Analysis

Let X be a Banach space, X^* be its dual and (Ω, Σ) be a measurable space. A function $\varphi : \Omega \to X$ is *scalarly measurable* if $f \circ \varphi$ is measurable for every $f \in X^*$. The φ is *totally scalarly measurable* if the set

 $F = \{ f \in X^* : f \circ \varphi \text{ is measurable} \}$

is total, i.e. for every $x \in X$, $x \neq 0$, there exists $f \in F$ such that $f(x) \neq 0$. A Banach space X satisfies the *property* \mathcal{D} if for every measurable space (Ω, Σ) every totally scalarly measurable function $\varphi : \Omega \to X$ is, in fact, scalarly measurable.

Property \mathcal{D} has been introduced by A. Gulisashvili [1] in connection with the Pettis integral in interpolation spaces. Gulisashvili has proved that the weak^{*} angelicity of X^* implies the property \mathcal{D} of X and has risen the problem of the reverse implication. We answer the Gulisashvili problem in negative.

References

 A. Gulisashvili, Estimates for the Pettis integral in interpolation spaces and inversion of the embedding theorems, Dokl. Acad. Nauk SSSR 263, 1982, 793–798 (Russian). English transl.: Sovet. Math. Dokl. 25, 1982, 428–432.