Three critical point theorems with applications to nonlinear BVPs

Marek Galewski

Technical Unviersity of Lodz, Poland marek.galewski@p.lodz.pl

Session: 38. Variational Methods in Nonlinear Analysis

In this talk we are concerned with three critical theorems applicable for ${\cal C}^1$ action functionals connected to anisotropic problems. Results are based on recent investigations and on ideas developed by Ricerri which can be summarized as follows: Let $(X, \|.\|)$ be a uniformly convex Banach space with strictly convex dual, $J \in C^1(X)$ be a functional with compact derivative, $x_0, x_1 \in X$, $p, r \in \mathbb{R}, p > 1, r > 0$. Assume (A 1) $\liminf \frac{J(x)}{2} > 0$:

(A.1)
$$\liminf_{\|x\|\to\infty} \frac{\varphi(x)}{\|x\|^p} \ge 0;$$

(A.2) $\inf_{\substack{x \in X \\ x \in X}} J(x) < \inf_{\substack{\|x - x_0\| \le r}} J(x);$ (A.3) $\|x_1 - x_0\| < r$ and $J(x_1) < \inf_{\substack{\|x - x_0\| = r}} J(x).$ There exists a nonempty open set $A \subseteq (0, +\infty)$ s. t. for all $\lambda \in A$ the functional $x \to \frac{\|x - x_0\|^p}{p} + \lambda J(x)$ has at least three critical points in X. Main idea used in this talk are concerned with the following

- replace the term $||x||^p$ with some convex coercive functional
- obtain a more precise estimation on the set A
- examine applicability of new results
- generalize to the locally Lipschitz case
- check what happens when the space is finite dimensional