
DMV–PTM Mathematical Meeting 17–20.09.2014, Poznań http://ptm-dmv.wmi.amu.edu.pl/
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We study the existence of compact invariant sets for the strongly damped

hyperbolic differential equation ü(t) = −Au(t)−cAu̇(t)+λu(t)+F (u(t)) being

at resonance at infinity, that is, A : X ⊃ D(A) → X is a sectorial operator

on a Banach space X and F : Xα → X is a continuous bounded map defined

on the fractional space Xα associated with A, c > 0 is a damping factor

and λ is an eigenvalue of A. We provide two geometrical assumptions for the

nonlinearity F , that allow to obtain Conley index formulas stating that the

Conley index for the associated semiflow, with respect to large ball, is equal

to suspension of the sphere of proper dimension depending on which of the

geometrical assumptions imposed on the nonlinearity is satisfied. It will be also

proved that the geometrical assumptions generalize well-known Landesman-

Lazer conditions (see e.g. [1], [2]), and moreover, cover some other cases where

the nonlinearity F exhibits a lower order resonance at infinity (see e.g. [3],

[6]). Presented topic is a continuation of [4] where the problem of existence of

compact invariant sets is studied for nonlinear parabolic equations.
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