Ground states of time-harmonic semilinear Maxwell equations

Jarosław Mederski

Nicolaus Copernicus University, Poland jmederski@mat.umk.pl

Session: 38. Variational Methods in Nonlinear Analysis

We investigate the existence and the nonexistence of solutions $E: \mathbb{R}^3 \to \mathbb{R}^3$ of the time-harmonic semilinear Maxwell equation

$$\nabla \times (\nabla \times E) + V(x)E = \partial_E F(x, E)$$
 in \mathbb{R}^3

where $V : \mathbb{R}^3 \to \mathbb{R}$, $V(x) \leq 0$ a.e. on \mathbb{R}^3 , $\nabla \times$ denotes the curl operator in \mathbb{R}^3 and $F : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ is a nonlinear function in E. In particular we find a ground state solution provided that suitable growth conditions on F are imposed and $L^{3/2}$ -norm of V is less than the best Sobolev constant. In applications F is responsible for the nonlinear polarization and $V(x) = -\mu\omega^2\varepsilon(x)$ where $\mu > 0$ is the magnetic permeability, ω is the frequency of the time-harmonic electric field $\Re\{E(x)e^{i\omega t}\}$ and ε is the linear part of the permittivity in an inhomogeneous medium.

References

- T. Bartsch, J. Mederski, Ground and bound state solutions of semilinear timeharmonic Maxwell equations in a bounded domain, to appear in Arch. Ration. Mech. Anal. (2014).
- [2] J. Mederski Ground states of time-harmonic semilinear Maxwell equations in ℝ³ with vanishing permittivity, arXiv:1406.4535.