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In this talk, we study optimal solutions for a class of non-consistent singular

linear systems of fractional nabla difference equations whose coefficients are

constant matrices. We take into consideration the cases that the matrices

are square with the leading coefficient singular, non-square and square with a

matrix pencil which has an identically zero determinant. Then, first we study

the system with given non-consistent initial conditions and provide optimal

solutions. Furthermore, we consider the system with boundary conditions and

provide optimal solutions for two cases, when the boundary value problem is

non-consistent and when it has infinite solutions. Finally, we study the Kalman

filter for singular non-homogeneous linear control systems of fractional nabla

difference equations. Numerical examples are given to justify our theory.
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