Minimal projections in three-dimensional normed spaces

Tomasz Kobos

Jagiellonian University, Poland Tomasz.Kobos@im.uj.edu.pl

Session: 39. Contributed talks

By a result of Bohnenblust for every three-dimensional normed space Xand its two-dimensional subspace Y, there exists a projection $P: X \to Y$ such that $||P|| \leq \frac{4}{3}$. The aim of the talk is to give a sketch of the proof of the following theorem: if for some subspace Y the minimal projection $P: X \to Y$ satisfies $||P|| \geq \frac{4}{3} - R$ for some R > 0, then there exists two dimensional subspace Z of X and projection $Q: X \to Z$ for which $||Q|| \leq 1 + \Phi(R)$ where $\Phi(R) \to 0$ as $R \to 0$. In other words, every space which has a subspace of almost maximal projection constant has also a subspace of almost minimal projection constant. As a consequence, every three-dimensional space has a subspace with the projection constant strictly less than $\frac{4}{3}$, which gives a nontrivial upper bound for the problem posed by Bosznay and Garay. We shall also characterize all three-dimensional spaces which have a subspace with the projection constant equal to $\frac{4}{3}$.