Minimal projections in three-dimensional normed spaces

Tomasz Kobos

Jagiellonian University, Poland
Tomasz.Kobos@im.uj.edu.pl
Session: 39. Contributed talks

By a result of Bohnenblust for every three-dimensional normed space X and its two-dimensional subspace Y, there exists a projection $P: X \rightarrow Y$ such that $\|P\| \leq \frac{4}{3}$. The aim of the talk is to give a sketch of the proof of the following theorem: if for some subspace Y the minimal projection $P: X \rightarrow Y$ satisfies $\|P\| \geq \frac{4}{3}-R$ for some $R>0$, then there exists two dimensional subspace Z of X and projection $Q: X \rightarrow Z$ for which $\|Q\| \leq 1+\Phi(R)$ where $\Phi(R) \rightarrow 0$ as $R \rightarrow 0$. In other words, every space which has a subspace of almost maximal projection constant has also a subspace of almost minimal projection constant. As a consequence, every three-dimensional space has a subspace with the projection constant strictly less than $\frac{4}{3}$, which gives a nontrivial upper bound for the problem posed by Bosznay and Garay. We shall also characterize all three-dimensional spaces which have a subspace with the projection constant equal to $\frac{4}{3}$.

