|
Session 2. Algebraic Geometry
|
A uniformization for the moduli space of abelian varieties of dimension six |
Gavril Farkas, Humboldt Universität zu Berlin, Germany
|
|
|
The general principally polarized abelian variety of dimension at
most five is known to be a Prym variety. This reduces the study of
abelian varieties of small dimension to the beautifully concrete
theory of algebraic curves. I will discuss recent progress on
finding a structure theorem for principally polarized abelian
varieties of dimension six, and the implications this uniformization
result has on the geometry of the moduli space \(A_6\).
|
|
Print version |
|