|
Session 4. Banach Spaces and Operator Theory with Applications
|
Nonlinear versions of the Daugavet property |
Dirk Werner, Freie Universität Berlin, Germany
|
|
|
A Banach space \(X\) has the Daugavet property if
\begin{equation}\label{werner-01}
\|\operatorname{Id}+T\|=1+\|T\|
\end{equation}
for all compact linear operators \(T\colon X\to X\). Classical examples
include \(C[0,1]\), \(L_1[0,1]\) and the disc algebra.
We shall discuss the validity of (1) in the setting of
bilinear operators and Lipschitz operators.
|
|
Print version |
|