Session 10. Generalized Convexity

Completeness in Minkowski-Rådström-Hörmander spaces

Hubert Przybycień, Adam Mickiewicz University in Poznań, Poland
Joint work with J. Grzybowski
A Minkowski--Rådström-Hörmander space $\widetilde{X}$ is a quotient space over the family $\mathcal{B} (X)$ of all nonempty bounded closed convex subsets of a Banach space $X.$ We prove in that a metric $d_{BP}$ (Bartels--Pallaschke metric) is the strongest of all complete metrics in the cone $\mathcal{B} (X)$ and Hausdorff metric $d_H$ is the coarsest of them. Our results follow from for more general case of a quotient space over an abstract convex cone $S$ with complete metric $d$. We also extend a definition of Demyanov's difference (related to Clarke's subdifferential) of finite dimensional convex sets $A\overset{_{D}}{-}B$ to infinite dimensional Banach space $X$ and we prove in that Demyanov's metric generated by such extension, is complete.
References
  1. Grzybowski J., Przybycień H., Completeness in Minkowski--Rådström--Hörmander spaces, Optimization 2013, online: \url{http://dx.doi.org/10.1080/02331934.2013.793330
Print version