Session 24. Nonlinear PDEs with applications in materials science and biology

A Canonical Extension of Korn's First Inequality to H(Curl) motivated by Gradient Plasticity with Plastic Spin

Patrizio Neff, Universität Duisburg-Essen, Germany
We prove a Korn-type inequality in $\overset{\circ}{\text{H}}(\text{Curl};\Omega,\mathbb{R}^{3\times 3})$ for tensor fields $P$ mapping $\Omega$ to $\mathbb{R}^{3\times 3}$. More precisely, let $\Omega\subset \mathbb{R}^3$ be a bounded domain with connected Lipschitz boundary $\partial\Omega$. Then, there exists a constant $c > 0$ such that \begin{equation}\label{01} c\|P\|_{L^2(\Omega,\mathbb{R}^{3\times 3})}\leq \|\operatorname{sym} P\|_{L^2(\Omega,\mathbb{R}^{3\times 3})}+\|\operatorname{Curl} P\|_{L^2(\Omega,\mathbb{R}^{3\times 3})} \end{equation} holds for all tensor fields $P\in\overset{\cdot}{\text{H}}(\text{Curl};\Omega,\mathbb{R}^{3\times 3})$, i.e., all $P\in \overset{\cdot}{\text{H}}(\text{Curl};\Omega,\mathbb{R}^{3\times 3})$ with vanishing tangential trace on $\partial\Omega$. Here, rotation and tangential trace are defined row-wise. For compatible $P$, i.e., $P = \nabla v$ and thus $\operatorname{Curl} P = 0$, where $v\in \text{H}^1(\Omega,\mathbb{R}^3)$ are vector fields having components $v_n$, for which $\nabla v_n$ are normal at $\partial \Omega$, the presented estimate \eqref{01} reduces to a non-standard variant of Korn's first inequality, i.e., \[ c\|\nabla v\|_{L^2(\Omega,\mathbb{R}^{3\times 3})}\leq \|\operatorname{sym}\nabla v\|_{L^2(\Omega,\mathbb{R}^{3\times 3})}. \] On the other hand, for skew-symmetric $P$, i.e., sym $P = 0$, \eqref{01} reduces to a non-standard version of Poincaré's estimate. Therefore, since \eqref{01} admits the classical boundary conditions our result is a common generalization of the two classical estimates, namely Poincaré's resp. Korn's first inequality. Applications to infinitesimal gradient plasticity with plastic spin are given.
Print version