Home
General
Program
Local & Travel
Log in & Registration
Organizers & sponsors
Contact

Session 38. Variational Methods in Nonlinear Analysis

Uniform bounds for strongly competing systems: the optimal Lipschitz case

Nicola Soave, Justus Liebig University Giessen, Germany
This is a joint work with Alessandro Zilio (Politecnico di Milano).
We present uniform regularity results regarding positive solutions of the family of systems \[ \begin{cases} -\Delta u_{i,\beta} = f_{i,\beta}(u_{i,\beta}) -\beta u_{i,\beta} \sum_{j \neq i} a_{ij} u_{j,\beta}^p & \text{in \(\Omega\)} \\ u_{i,\beta}=0 & \text{on \(\partial \Omega\)} \qquad i=1,\dots,k \end{cases} \] in the cases \(p=1\) (symmetric interaction) and \(p=2\) (variational interaction). For such systems, of interest in population dynamics and in the study of phase-separation of Bose-Einstein condensates, we show that \(L^\infty(\Omega)\)-boundedness implies \(\mathcal{C}^{0,1}(\overline{\Omega})\)-boundedness, uniformly in \(\beta \to +\infty\). This extend the \(\mathcal{C}^{0,\alpha}\)-regularity theory available in the literature (\(0 \le \alpha <1\)) to the optimal Lipschitz case.
Print version