Session 8. Dynamic Systems with Fractional and Time Scale Derivatives

Existence of optimal solution to some Bolza problem governed by Dirichlet fractional problem

Marek Majewski, Faculty of Mathematics and Computer Science, University of Lódź, Poland
We investigate the problem of the existence and continuous dependence of solution to the following Dirichlet problem $$ \left\{ \begin{array} [c]{l} f_{x_{1}}(t,x,D_{a+}^{\alpha}x,y,D_{a+}^{\beta}y,u)=D_{b-}^{\alpha}f_{x_{2} }(t,x,D_{a+}^{\alpha}x,y,D_{a+}^{\beta}y,u)\\ f_{y_{1}}(t,x,D_{a+}^{\alpha}x,y,D_{a+}^{\beta}y,u)=D_{b-}^{\beta}f_{y_{2} }(t,x,D_{a+}^{\alpha}x,y,D_{a+}^{\beta}y,u) \end{array} \right. \label{p1} $$ $$\left\{ \begin{array} [c]{l} I_{a+}^{1-\alpha}x\left( a\right) =x\left( a\right) =x\left( b\right) =0,\\ I_{a+}^{1-\beta}y\left( a\right) =y\left( a\right) =y\left( b\right) =0, \end{array} \right. \label{b1} $$ Since the assumptions we made does not guarantee the uniqueness of solution to (\ref{p1})-(\ref{b1}) we use the notion of Kuratowski--Painlev\'{e} limit to describe the mentioned continuous dependence. Applying continuous dependence we also prove theorem on existence of optimal solution to the following Bolza problem: \begin{enumerate}
  • [(B)] minimize \begin{multline*} \mathcal{B}\left( u,x_{u},y_{u}\right) := \int_{a}^{b}B_{1}( t,x_{u}\left( t\right) ,D_{a+}^{\alpha}x_{u}\left( t\right) ,y_{u}\left( t\right) ,D_{a+}^{\beta}y_{u}\left( t\right) ,u\left( t\right) ) dt +B_{2}\left( x_{u}\left( T\right) ,y_{u}\left( T\right) \right) \end{multline*} where \(\left( x_{u}\left( .\right) ,y_{u}\left( .\right) \right) \) is any solution to (\ref{p1})-(\ref{b1}) corresponding to \(u\left( .\right) \in\mathcal{U}_{L}\), \(T:=\frac{b-a}{2}\), \begin{multline*} \mathcal{U}_{L}:=\{ u\left( .\right) \in L^\infty\left([a,b],M\right):\left\vert u\left( t_{1}\right) -u\left( t_{2}\right) \right\vert \leq L\left\vert t_{1} -t_{2}\right\vert \text{ for a.e. }t_{1},t_{2}\in\left[ a,b\right] \} \end{multline*}and \(M\subset \mathbb R^m\) is a given convex and compact set.
  • Print version