Session 23. Nonlinear Evolution Equations and their Applications

Renormalized solutions of nonlinear parabolic problems in generalized Musielak-Orlicz spaces

Petra Wittbold, Universität Duisburg-Essen, Germany
The talk is based on a joint work with P. Gwiazda, A. Wróblewska-Kamińska and A. Zimmermann
We are interested in existence and uniqueness of renormalized solutions to the nonlinear initial-boundary value problem \begin{align*} \partial_t \beta(x,u) - \operatorname{div} (a(x,Du) + F(u)) = f & \text{ in } Q_T= (0,T) \times \Omega\\ u=0 & \text{ on } \Sigma_T= (0,T) \times \partial \Omega \\ \beta( \cdot,u(0, \cdot) ) = b_0 & \text{ on } \Omega, \end{align*} where
  • \(\beta\colon \Omega \times \mathbb{R} \rightarrow \mathbb{R}\) is a monotone single-valued Carathéodory function,
  • \(F\colon \mathbb{R} \rightarrow \mathbb{R}^N\) is a locally Lipschitz continuous function,
  • \(b_0\) and \(f\) are integrable given data, and
  • the Carathéodory vector field \(a\colon \Omega \times \mathbb{R}^N \rightarrow \mathbb{R}^N\) is monotone w.r.t. \(\xi \in \mathbb{R}^N\) and satisfies generalized growth and coerciveness conditions of the form \( a(x, \xi) \cdot \xi \geq c_a (M(x,\xi) + M^*(x, a(x, \xi)) - a_0(x) \quad \text{a.e. } x \in \Omega, \forall \xi \in \mathbb{R}^N\),
with \(c_a >0\), \(a_0 \in L^1(\Omega)\), \(M: \Omega \times \mathbb{R}^N \rightarrow \mathbb{R}\) being a generalized \({\mathcal{N}}\)-function with complementary function \(M^*\). Our setting includes parabolic problems involving the \(p(x)\)- and also the anisotropic \(p=(p_1, \ldots, p_N)\)-Laplacian with variable exponents essentially larger than 1.

The appropriate functional setting involves generalized Musielak-Orlicz spaces \(L_M(\Omega;\mathbb{R}^N)\) which, in general, are neither separable nor reflexive. Therefore, classical monotonicity and truncation techniques have to be appropriately adapted to the non-reflexive and non-separable functional setting.

Print version